5,346 research outputs found

    Inertial particles distribute in turbulence as Poissonian points with random intensity inducing clustering and supervoiding

    Full text link
    This work considers the distribution of inertial particles in turbulence using the point-particle approximation. We demonstrate that the random point process formed by the positions of particles in space is a Poisson point process with log-normal random intensity ("log Gaussian Cox process" or LGCP). The probability of having a finite number of particles in a small volume is given in terms of the characteristic function of a log-normal distribution. Corrections due to discreteness of the number of particles to the previously derived statistics of particle concentration in the continuum limit are provided. These are relevant for dealing with experimental or numerical data. The probability of having regions without particles, i.e. voids, is larger for inertial particles than for tracer particles where voids are distributed according to Poisson processes. Further, the probability of having large voids decays only log-normally with size. This shows that particles cluster, leaving voids behind. At scales where there is no clustering there can still be an increase of the void probability so that turbulent voiding is stronger than clustering. The demonstrated double stochasticity of the distribution originates in the two-step formation of fluctuations. First, turbulence brings the particles randomly close together which happens with Poisson-type probability. Then, turbulence compresses the particles' volume in the observation volume. We confirm the theory of the statistics of the number of particles in small volumes by numerical observations of inertial particle motion in a chaotic ABC flow. The improved understanding of clustering processes can be applied to predict the long-time survival probability of reacting particles. Our work implies that the particle distribution in weakly compressible flow with finite time correlations is a LGCP, independently of the details of the flow statistics

    Are standards and regulations of organic farming moving away from small farmers' knowledge?

    Get PDF
    Organic farming is a promising agricultural method with positive effects on the human ecological and social environment. Governments have taken over a major role in defining organic farming by creating legal standards. Many countries all over the world have established a certification and accreditation system in order to protect the justified expectations of consumers with regard to processing and controlling the product quality of organic goods and to protecting producers from fraudulent trade practices. As they are relevant to international trade, these standards do not only influence the organic farming movement on the national level but also have a converse impact across national borders. Organic farming was established in a bottom-up process as farmers aimed to design sustainable ways of using natural resources. Farmers’ traditional knowledge and their awareness of ecological, as well as, of social affairs was the main base for the development of organic farming. Since public interest in organic farming has grown rapidly, the ownership on the process of defining organic farming is no longer in the hands of farmers and the original principles and aims of themovement seem to be threatened by a bureaucratic view of “recipe”-organic farming. However, unsolved problems also exist between the necessities of global harmonization and the local adaptability of the standards on organic farming. This paper structures the current discussion and gives future prospects for further development

    Statistical properties of supersonic turbulence in the Lagrangian and Eulerian frameworks

    Full text link
    We present a systematic study of the influence of different forcing types on the statistical properties of supersonic, isothermal turbulence in both the Lagrangian and Eulerian frameworks. We analyse a series of high-resolution, hydrodynamical grid simulations with Lagrangian tracer particles and examine the effects of solenoidal (divergence-free) and compressive (curl-free) forcing on structure functions, their scaling exponents, and the probability density functions of the gas density and velocity increments. Compressively driven simulations show a significantly larger density contrast, a more intermittent behaviour, and larger fractal dimension of the most dissipative structures at the same root mean square Mach number. We show that the absolute values of Lagrangian and Eulerian structure functions of all orders in the integral range are only a function of the root mean square Mach number, but independent of the forcing. With the assumption of a Gaussian distribution for the probability density function of the velocity increments on large scales, we derive a model that describes this behaviour.Comment: 24 pages, 13 figures, Journal of Fluid Mechanics in pres

    Origins of Extragalactic Cosmic Ray Nuclei by Contracting Alignment Patterns induced in the Galactic Magnetic Field

    Full text link
    We present a novel approach to search for origins of ultra-high energy cosmic rays. These particles are likely nuclei that initiate extensive air showers in the Earth's atmosphere. In large-area observatories, the particle arrival directions are measured together with their energies and the atmospheric depth at which their showers maximize. The depths provide rough measures of the nuclear charges. In a simultaneous fit to all observed cosmic rays we use the galactic magnetic field as a mass spectrometer and adapt the nuclear charges such that their extragalactic arrival directions are concentrated in as few directions as possible. Using different simulated examples we show that, with the measurements on Earth, reconstruction of extragalactic source directions is possible. In particular, we show in an astrophysical scenario that source directions can be reconstructed even within a substantial isotropic background.Comment: 14 pages, 15 figure

    Heteroepitaxial growth of ZnO branches selectively on TiO2 nanorod tips with improved light harvesting performance

    Get PDF
    A seeded heteroepitaxial growth of ZnO nanorods selectively on TiO2 nanorod tips was achieved by restricting crystal growth on highly hydrophobic TiO2 nanorod film surfaces. Intriguing light harvesting performance and efficient charge transport efficiency has been found, which suggest potential applications in photovoltaics and optoelectronics

    Yukawa Couplings for the Spinning Particle and the World Line Formalism

    Get PDF
    We construct the world-line action for a Dirac particle coupled to a classical scalar or pseudo-scalar background field. This action can be used to compute loop diagrams and the effective action in the Yukawa model using the world-line path-integral formalism for spinning particles.Comment: 10 pages Latex, two uuencoded postscript figures. Note added at the en
    • …
    corecore